
MedLiber Regener. Med. | www.medLiber.com Volume 1 | Issue  123

A Review of the Current State of Bioprinting 
Technology

 
*Correspondence:   

Levent Aydin

levent.aydin@kocaeli.edu.tr

Received: 08 Oct 2023

Accepted: 11 Nov 2023

Published: 22 Nov 2023

Citation: Aydin L. A review 
of current state of bioprinting 
technology. Medliber Regener 

Med. 2023;1(1):23-43. 

Levent Aydin*    

Department of Podiatry, Kocaeli University, Turkey

Copyright: ©2023 Aydin L. This is an open-access article  distributed under the terms of the Creative Commons Attribution  License, which 
permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Keywords: 3D Bioprinter • Bioprinting Methods • Bioprinter Modules • Bioink 

OPEN ACCESS

REVIEW
Published: 21 Nov 2023

doi: 10.55828/mrm-11-03

ABSTRACT

The field of bioprinting has witnessed remarkable advancements in recent years, 
revolutionizing the fabrication of biological tissues and organs for research, 
pharmaceutical testing, and potential clinical applications. This progress is 
attributed to the development of diverse bioprinting technologies, ranging from 
low-cost models utilizing microextrusion-based technology to high-end systems 
employing droplet-based and laser-assisted techniques. These technologies offer 
varying levels of precision, build volume, and material compatibility, catering to 
a wide spectrum of research needs. Notably, microfluidic-based bioprinting has 
emerged as a transformative approach, enabling fast, continuous switching and 
mixing of materials, achieving nearly single-cell printing resolution. Moreover, 
support-free multiaxial printing and high-resolution printing using focused light 
have shown promise in enhancing geometric complexity and cell viability. The 
integration of modular print heads and the potential for in situ bioprinting are 
poised to further expand the capabilities of bioprinting technologies. Despite 
these advancements, current bioprinting systems exhibit certain limitations, 
including constraints in motion axes, printing volume, and material compatibility. 
Addressing these challenges will be crucial in realizing the full potential of 
bioprinting for tissue engineering and regenerative medicine applications. 
This review provides valuable insights into the diverse range of bioprinting 
methods, systems and their collective potential to advance tissue engineering 
and regenerative medicine.
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INTRODUCTION

Bioprinting is a groundbreaking fusion of technology, biology, and medicine. This method 
crafts biological tissues with the precision of an artist creating a masterpiece [1]. Central 
to bioprinting is specialized equipment enabling controlled material deposition, especially 
bioinks [2]. These bioinks, composed of cells, growth factors, and biomaterials, form living 
structures mirroring natural tissues [3]. Unlike traditional methods, which use plastic or 
metal, bioprinting harnesses the regenerative potential of biological components, holding 
great promise for regenerative medicine and personalized body part fabrication [4]. It also 
plays a vital role in understanding disease progression, providing controlled lab environments 
for research on disease mechanisms, drug testing, and personalized medicine approaches 
[5]. Bioprinting is a paradigm shift in medicine and tissue engineering, offering innovative 
solutions for tissue repair and replacement. Its transformative potential is evident in the 
seamless integration of cutting-edge technology and intricate biology, promising a future 
of precision-manufactured, functional, living tissues [6]. A key challenge involves creating 
bioinks that support living cells, ensuring both structural integrity and post-fabrication cell 
viability and growth [7]. Materials like hydrogels, collagen, and alginate are explored for 
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their unique properties and applications [4]. Precise control 
of factors like temperature, pH, and oxygen levels is vital 
to safeguard cell health during printing [8]. Differentiation 
of printed cells into desired tissue types without aberrant 
growth is crucial [1]. Establishing functional vascular 
networks within printed tissues is another pivotal aspect, 
essential for tissue survival and function [9]. Researchers 
are pushing bioprinting boundaries to create intricate organs 
like the heart, liver, and lungs, addressing challenges like 
diverse cell integration and functional vasculature systems 
[3].

REVIEW OF LITERATURE

History of  Bioprinting

Bioprinting, a fusion of 3D printing and biology, began 
in the late 20th century [10]. A milestone came in the early 
2000s when Dr. Thomas Boland and the team at Clemson 
University pioneered the first bioprinting technology, 
incorporating cells into hydrogels [11]. Initially, it focused 
on rudimentary structures like cell layers and small tissues 
[12]. In the late 2000s and early 2010s, there was a surge 
in research activity, exploring various printing methods 
for biomaterials like hydrogels, ceramics, and metals [6]. 
Precision and resolution improved, allowing printing of 
intricate structures with 3D imaging and CAD software, like 
blood vessels and heart tissues [3]. The evolution continued, 
expanding to different cell types, particularly stem cells, 
crucial for generating functional tissues and organs [1]. New 
bioink classes, mainly hydrogels and alginates, enhanced 
versatility [7]. Extrusion-based bioprinting techniques 
further refined precision and complexity [4]. Beyond its 
origins, bioprinting found applications in pharmaceuticals 
and cosmetics, contributing to drug discovery, development, 
and customized skincare [13]. Recently, there’s been a 
surge in using bioprinting to create functional tissues and 
organs, addressing the organ shortage crisis [3]. Integration 
of machine learning and AI is being explored to enhance 
efficiency and precision [14,15]. Bioprinting, at the 
intersection of biology and engineering, has the potential 
to revolutionize various industries and healthcare by 
fabricating personalized, functional replacement tissues 
and organs, marking a remarkable journey from inception 
to continuous evolution.

Current Bioprinting Methods

Inkjet bioprinting

Inkjet bioprinting is an innovative method that has 

emerged as a cornerstone in the field of tissue engineering 
and regenerative medicine [16]. This technique leverages 
the principles of traditional inkjet printing, allowing for the 
precise deposition of bioinks containing living cells and 
biomaterials in a layer-by-layer fashion, ultimately enabling 
the creation of complex 3D tissue structures [17-18]. There 
are several modalities employed in inkjet bioprinting. The 
thermal method relies on localized heating to generate 
pressure pulses, forcing droplets out of the nozzle. Despite 
brief exposure to high temperatures (ranging from 200 to 
300 °C), studies have shown minimal impact on biological 
molecules or cell viability [19-20]. On the other hand, 
piezoelectric-based printers utilize a piezoelectric crystal 
to induce rapid shape changes, generating an acoustic 
wave that breaks the liquid into droplets. While capable 
of precise droplet formation, concerns regarding potential 
cellular damage arise due to the employed high frequencies 
[21-22]. One of the strengths of inkjet bioprinting lies 
in its ability to precisely control droplet size and density 
[23-24]. Electronic adjustments can vary the drop size 
from minuscule picoliters to larger volumes, allowing for 
the creation of intricate concentration gradients of cells, 
materials, or growth factors within the 3D structure. This 
technology can yield high-resolution structures, typically 
ranging from 20 to 100 micrometers, instrumental in 
fabricating complex tissues with fine details [25]. Inkjet 
bioprinting has found significant application in functional 
skin and cartilage regeneration. By depositing primary cells 
and/or stem cells with precise density and subsequently 
crosslinking the cell-containing material, inkjet bioprinting 
enables the rapid production of viable and functional tissue 
constructs. This approach holds great promise for treating 
skin defects and joint injuries [26-27]. Moreover, inkjet 
bioprinting is revolutionizing drug testing and disease 
modeling. By creating biomimetic tissue models with 
patient-specific cells, researchers can study drug responses 
and disease progression in a controlled, physiologically 
relevant environment. This advancement has the potential 
to significantly reduce the time and cost associated with 
drug development [28-29]. Another transformative aspect of 
inkjet bioprinting lies in the ability to create patient-specific 
implants and prosthetics. By utilizing patient-derived cells 
and bioinks, it is possible to fabricate implants tailored to 
individual anatomies. This holds particular relevance in 
areas like orthopedics and craniofacial surgery [30-31]. 

Microextrusion bioprinting 

Microextrusion bioprinting encompasses various 
sub-methods, including piston-driven, pneumatic, and 
screw-driven systems, all contributing to the fabrication 
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of intricate biomaterial structures [32]. This technique 
involves the controlled dispensing of biomaterials through 
nozzles or needles, widely 210 μm and 400 μm, connected to 
cartridges filled with specialized ink [33]. The adaptability 
of microextrusion bioprinting allows for the integration of 
multiple cartridges in a single printer, enabling the creation 
of heterogeneous tissue constructs. Prior to commencing 
the bioprinting process, it is imperative to ascertain crucial 
parameters such as printing speed, dispensing pressure, and 
movement distance. These determinants are significantly 
influenced by the specific properties of both the selected cell 
line and bioink. Printability, a vital aspect, is evaluated based 
on the ease with which the bioink can be printed with good 
resolution, while still maintaining its structural integrity 
post-printing. This assessment encompasses considerations 
of shape fidelity, resolution, biocompatibility, and cell 
supportive capabilities [34-36]. Despite notable progress, 
achieving optimal printability and cell function in bioinks 
continues to be an active area of research. Balancing bioink 
viscosity for cell support and printability is of paramount 
importance [37]. In some cases, this may entail subjecting 
cells to a certain degree of stress during printing or accepting 
a compromise in printability. Researchers have explored 
various strategies, including adjustments to printing 
parameters and alterations in printing techniques such as 
FRESH bioprinting, to enhance the printability of bioinks 
with optimal cell support [38]. Both Newtonian and non-
Newtonian bioinks have been employed, with meticulous 
optimization of their printable viscosity. For shear-thinning 
bioinks, viscosity decreases with increasing strain rate, 
ultimately enhancing cell protection and resolution [39]. 
The achievable resolution typically spans from 5 μm 
to millimeters in width, while cell viability falls within 
the range of approximately 40–80% [40-41]. Previous 
observations indicated that microextrusion was associated 
with lower cell survival compared to inkjet and laser-based 
bioprinting (40–86%) due to the extrusion pressure and 
shear stress [42]. However, studies have reported improved 
cell viability with pressure extrusion printing, reaching as 
high as 97% on day 7, 64.4% with a piezoelectric inkjet 
on day 21, and 98% with a thermal inkjet on day 21 post-
printing [43-45]. 

Laser assisted bioprinting

Laser-Assisted Bioprinting (LAB) leverages Laser-
Induced Forward Transfer (LIFT) technology, originally 
designed for precise metal patterning in semiconductor 
manufacturing [46]. This advanced process involves 
three core components: a pulsed laser source, a ribbon, 
and a receiving substrate [47]. By utilizing nanosecond 

lasers at specific wavelengths, such as 193 nm, 248 nm, 
or 1064 nm, LAB achieves controlled energy deposition, 
typically ranging from 1-20 μJ per pulse [48]. The ribbon, 
a multi-layered structure with transparent glass, a laser-
absorbing metal layer (commonly gold or titanium), and 
a suspended bioink layer comprising cells, hydrogels, 
and bioactive factors, plays a pivotal role. When the laser 
impinges on the ribbon, the metal layer vaporizes, leading 
to the creation of a high-pressure bubble, ejecting bioink 
droplets onto the receiving substrate [49]. This process 
ensures a remarkable resolution, varying from picometer 
to micrometer size, influenced by factors like bioink layer 
thickness, viscosity, surface tension, substrate wettability, 
laser parameters, and air gap [50]. LAB stands out for its 
ability to print high-density bioinks (up to ~108 cells mL-
1) with resolution ranging from 10-100 μm, achieving this 
without imposing mechanical stress on cells [51]. It excels in 
printing individual cells or cell aggregates per droplet with 
exceptional accuracy and cell viability. In the realm of tissue 
engineering, LAB’s precision and resolution hold significant 
promise. It facilitates the accurate reproduction of internal 
tissue structures, cellular orientation, and arrangement 
in various tissues and organs. For instance, in bone 
engineering, LAB significantly improves vascularization 
and tissue integration in 3D bone-engineered constructs 
[52]. Mesenchymal stromal cells were in situ printed within 
a collagen and nHA matrix, leading to substantial bone 
formation [53]. In skin tissue engineering, LAB enables the 
construction of tissue-engineered skin, closely mimicking 
native skin composition and spatial arrangement. This 
approach shows promise in grafting and epidermis-like 
tissue formation [54]. Similarly, LAB aids in fabricating 
cornea-mimicking structures, offering potential solutions 
for corneal diseases in cornea regeneration. The 3D printed 
scaffolds exhibit promising integration with host tissue 
[55]. On the other hand, in adipose tissue engineering, LAB 
allows for the printing of human adipose-derived stem cells 
(hASCs) in a 3D grid pattern, demonstrating proliferation 
and differentiation without compromising viability while 
it demonstrates the printing of multiple cell types in a 3D 
array, fostering vascular-like structure formation in vascular 
engineering [56-57]. However, despite its potential, LAB 
does face challenges, including cost and limitations in 
printing mechanisms. Ongoing research aims to overcome 
these hurdles and further integrate LAB with other 3D 
bioprinting techniques for enhanced tissue constructs [58]. 
Additionally, LAB offers a unique capability to create 
artificial cell niches, crucial for cancer and drug research. 
The fabricated constructs closely mimic the structural 
and functional orientation of native tissues, providing a 
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powerful tool for in vitro drug screening and toxicological 
testing [59].

Stereolithography bioprinting

Stereolithography (SLA) bioprinting has emerged as 
a highly promising technique for fabricating scaffolds, 
offering versatility for both cell-free and cell-laden forms 
[60-61]. This method leverages digital micromirror arrays 
to precisely modulate light intensity, allowing for the 
layer-by-layer polymerization of light-sensitive polymer 
materials [62]. It presents substantial advantages over other 
bioprinting methodologies. One of the pivotal strengths of 
SLA lies in its capacity to sequentially print light-sensitive 
hydrogels, irrespective of their complexity or size. This 
results in consistent printing times for each layer, with 
the total duration primarily hinging on the structure’s 
thickness. Studies have noted that the printing time with 
stereolithography averages around 30 minutes [63]. This 
efficiency can significantly expedite the overall printing 
process, rendering it an enticing choice for bioprinting 
applications. Furthermore, SLA distinguishes itself as a 
nozzle-free printing technique, leading to high cell viability, 
often exceeding 90%, and an impressive resolution down to 
10 μm [64-65]. This heightened cell viability is a crucial 
factor in bioprinting, ensuring that the printed cells remain 
viable and functional. When comparing various bioprinting 
systems, a succinct assessment highlights stereolithography 
as an exceptionally competitive technique, characterized by 
a significant combination of high resolution, speed, and cell 
viability [66]. However, it is crucial to recognize specific 
limitations linked to current SLA bioprinting methods. 
For instance, some implementations incorporate UV light 
sources for polymerization, which have been reported to 
potentially harm cells [67]. Consequently, researchers have 
sought alternative strategies to mitigate these concerns. One 
such approach involves the utilization of an eosin Y based 
photoinitiator, specifically engineered for crosslinking 
hydrogels under green light (around 514 nm) [68]. Eosin 
Y has been recognized for its reduced toxicity compared 
to other photoinitiators like Irgacure 2959, rendering it an 
excellent choice for bioprinting systems [69]. This technique 
enables visible light stereolithography-based bioprinting, 
substantially minimizing potential risks associated with UV 
light exposure.

Mask projection stereolithography bioprinting

Mask-Image Projection Stereolithography (MPSL) is a 
cutting-edge 3D printing technique that employs Liquid 
Ultraviolet (UV) curable photo-polymer and a UV laser 
to construct solid objects through the layer-by-layer 

polymerization of thin liquid layers [70]. This method stands 
out for its ability to create intricate shapes with internal 
structures, alongside easy removal of unpolymerized resin 
and an impressive feature resolution of approximately 1 
μm [71]. Manufacturing with MPSL necessitates a photo-
crosslinkable site within the polymeric (or monomeric) 
material. This involves integrating an inert core with 
photo-crosslinkable moieties like acrylates or epoxies into 
the polymeric design [72]. Recent applications of MPSL 
have ventured into the fabrication of complex scaffolds 
designed for tissue and cell growth [73-74]. However, 
it’s important to note that the biological focus of these 
applications has primarily limited the field to aliphatic 
polymers and oligomers, characterized by relatively lower 
thermal decomposition temperatures (Td) below 400 ℃ and 
glass transition temperatures (Tg) typically under 100 ℃ 
[75]. The availability of high-Td, 3D printable polymers 
remain limited, with a few exceptions like cyanate ester 
resins [76]. Furthermore, the range of engineering polymers 
suitable for MPSL-based 3D printing is primarily confined 
to thermosets due to inherent molecular design constraints. 
The development of new functional polymeric materials 
is crucial for unlocking the full potential of 3D printing 
with MPSL. In addition to MPSL, other techniques within 
stereolithography like Laser Direct Writing (LDW) or beam 
scanning rely on a laser to solidify liquid-based resins 
within a bio-ink reservoir, with resolution being exposure-
dependent [77]. However, it’s worth noting that earlier 
printed layers can be repeatedly exposed to the laser in 
LDW, potentially leading to uneven mechanical strength of 
the final structure [78]. In contrast, MPSL utilizes a digital-
light procession technique, allowing for the simultaneous 
solidification of an entire patterned layer [79]. This 
approach is notably faster compared to the laser beam 
technique. On the other hand, Continuous Liquid Interface 
Production (CLIP) technology has significantly increased 
the fabrication speed of MPSL by continuously building 
the layers of a 3D part above a “dead zone” formed by 
oxygen inhibition of photopolymerization [80]. While this 
has drastically enhanced the speed of MPSL, it is important 
to note that CLIP may have limitations when it comes to 
fabricating larger-sized parts, as the heat generated during 
the polymerization process may not dissipate adequately in 
time [81-82].

Digital light processing bioprinting

Digital Light Processing (DLP) bioprinting is an 
innovative additive manufacturing technique that employs 
digitalized light, including Ultraviolet (UV), blue, Near-
Infrared (NIR), or other visible light, to induce in situ 
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photopolymerization. This process facilitates the conversion 
of liquid polymer materials into solid 3D structures with 
exceptional resolution and intricate architectures [83-84]. 
The DLP printer, driven by a Digital Micromirror Device 
(DMD) projector, plays a pivotal role in this process. 
It enables the rapid solidification of an entire layer of 
monomer at a time, marking a significant advancement over 
extrusion-based bioprinting methods [85]. This attribute 
grants DLP technology a substantial advantage in achieving 
complex structures. DLP bioprinting has been successfully 
employed in fabricating a diverse range of tissues, 
including heart, blood vessels, bone, cartilage, liver, lung, 
eye, neuronal tissue, and pancreatic tissue [86-88]. This 
showcases the broad applicability of DLP technology in 
various biomedical contexts. One of the key advantages of 
DLP bioprinting lies in its ability to customize the stiffness 
of printed scaffolds. By adjusting exposure time and light 
intensity, it becomes possible to encapsulate different cell 
types within the scaffold matrix [84,89]. This dynamic 
capability further enhances the utility of DLP bioprinting in 
tissue engineering applications. Moreover, DLP bioprinting 
has enabled the creation of multi-material components within 
3D tissue constructs. This is made possible through novel 
Extracellular Matrix (ECM) improvements, expanding the 
repertoire of achievable tissue models [90-91]. In practice, 
DLP bioprinters are characterized by their user-friendliness, 
cost-effectiveness, and high accuracy/efficiency. They have 
found wide-ranging applications in drug screening, disease 
modeling, and tissue regeneration. Notably, they have been 
instrumental in designing liver-inspired 3D tissue models 
for efficient toxin trapping [83]. Additionally, hydrogel-
based microfluidic chips have been employed to simulate 
fluid-solid interactions for drug delivery studies [92-93]. 
Furthermore, DLP bioprinting has enabled the fabrication of 
heart valve hydrogels with complex structures, showcasing 
high fatigue resistance [94]. These achievements underscore 
the transformative potential of DLP bioprinting in various 
biomedical domains. To achieve successful DLP-based 
bioprinting, meticulous consideration must be given to the 
selection of suitable photopolymers, photoinitiators, and 
photoabsorbers [95]. Various photopolymerizable polymer 
systems, including PEGDA, PEGMA, GelMA, and others, 
have been utilized, each possessing distinct mechanical and 
biocompatible properties [96]. This underscores the pivotal 
role of material selection in optimizing DLP bioprinting 
processes.

Kenzan bioprinting

The Kenzan bioprinting method, conceived by Koich 
Nakayama, stands as a remarkable leap forward in scaffold-

free 3D bioprinting [97]. This technique hinges on the 
intrinsic tendency of cells to self-aggregate, forming high-
density cellular structures by positioning cell spheroids 
on a fine needle array [98]. The methodological principle 
is rooted in the fusion of cell spheroids, facilitated by the 
temporary support of stainless-steel microneedles known 
as “kenzans” [99]. These kenzans, organized in patterns of 
either 9x9 or 26x26, play a crucial role as a scaffold during 
the fusion process [100]. The Regenova bioprinter, designed 
by Cyfuse Biomedical K.K., is purpose-built for Kenzan 
bioprinting, employing a sophisticated system featuring 
a camera-based machine vision system, a plate handling 
platform, a disposal chamber, and a container holding the 
Kenzan needle array submerged in PBS [101]. During 
the bioprinting procedure, the Regenova system employs 
the vision system to identify and inspect a spheroid. This 
selected spheroid is then retrieved from the culture plate 
using suction from the nozzle and precisely positioned onto 
a needle on the Kenzan array, adhering to a preprogrammed 
3D pattern. This precision placement allows for the fusion 
of adjacent spheroids, culminating in the creation of a tissue 
construct. This method enables the fabrication of high-
density cellular structures with exceptional precision [102-
103]. It’s worth noting that the efficiency and resolution 
of Kenzan bioprinting are influenced by factors such 
as the size and distribution of spheroids, as well as their 
compaction. While the technique is potent, it’s important to 
acknowledge its associated challenges. It can be relatively 
high-cost and time-consuming, especially for larger tissue 
constructs [104]. Moreover, careful consideration must be 
given to the post-bioprinting and implantation workflow to 
ensure the integrity and functionality of the printed tissue 
constructs [105]. On the other hand, Kenzan method has 
found diverse applications, ranging from the fabrication of 
nerve conduits, cardiac patches, and bone constructs, to the 
reconstruction of tissues like liver, tendon/ligament, and 
bladder tissues [106-108]. Researchers have even pushed 
the boundaries of the method by using it for the creation 
of trachea-like tubes, offering promising prospects for the 
restoration of lost epithelium and capillaries due to surgical 
resection [109].

Acoustic bioprinting

Acoustic bioprinting, also referred to as Acoustic Droplet 
Ejection (ADE), stands out as a highly promising platform for 
droplet generation in biological applications. This method 
harnesses ultrasonic waves focused at the interface of fluid 
and air, resulting in radiation pressure that expels droplets 
from the surface. The size of the ejected droplet is inversely 
proportional to the frequency of the transducer, ranging 
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from 300 μm with 5 MHz waves to 5 μm with 300 MHz 
waves [111]. Unlike conventional inkjet printers, which rely 
on physical nozzles, ADE controls droplet characteristics 
entirely through sound waves, offering unprecedented 
advantages in handling biological samples. It mitigates 
issues such as clogging, sample contamination, and damage 
to cells or biomarker structures due to shear forces [112]. 
This nozzleless technology has been pivotal in achieving 
high-throughput droplet generation, processing fluids at 
impressive rates of up to 25000 droplets/s, or roughly 50 
nL/s per ejector head. Notably, Micro-electromechanical 
System (MEMS) based arrays with 1024 ejector heads have 
demonstrated the potential to process over 180 mL of fluid 
in under an hour, a significant improvement over existing 
microfluidic cell separation method [113]. Similarly, ADE’s 
reliance on acoustic waves, enabling them to propagate 
through a matched coupling media with minimal loss of 
acoustic energy, while ensuring no direct contact between 
the sample and the transducer. This effectively eliminates 
the risk of cross-sample contamination and maintains 
sterility [114]. Conversely, traditional nozzle-based printing 
methods encounter limitations related to print resolution, 
particularly due to nozzle size, which leads to frequent 
clogging, especially when processing cell-laden bioinks. 
Moreover, as the nozzle diameter decreases, the shear 
stress on cells escalates, potentially resulting in irreversible 
damage and cell death [115].

Magnetic bioprinting

Magnetic bioprinting, a cutting-edge technique in tissue 
engineering, leverages the power of magnetic forces to 
manipulate and assemble cells into desired configurations. 
This method relies on two primary strategies. The first 
strategy involves the incubation of cells with nanoparticles, 
specifically utilizing Fe3O4 magnetic fields to induce gel 
formation through electrostatic interactions [116]. This 
process initiates the binding of cells to a nanoparticle 
assembly known as a Nanoshuttle [116]. This assembly 
comprises magnetic iron oxide nanoparticles that render 
the cells magnetic. Subsequently, the magnetized cells are 
cultured in an incubator, a crucial step in cell cultivation 
[117]. During this phase, the cells self-organize, forming 3D 
structures at the air-liquid interface. This dynamic allows for 
the rapid creation of dense cultures capable of synthesizing 
extracellular matrix [118-119]. The second strategy is 
characterized by the combination of label-free cells with a 
paramagnetic buffer in the presence of an external magnetic 
field [120-121]. This interaction prompts cell movement 
towards regions of lower magnetic field strength, enabling 
precise control over the shape of 3D cell assemblies. The 

spatial arrangement of these assemblies can be manipulated 
by altering the magnetic template’s shape, offering further 
versatility in microtissue assembly [122]. The advantages 
of magnetic bioprinting are manifold. Its speed and ease of 
handling are particularly noteworthy. This technique yields 
cultures within a remarkably short timeframe, ranging from 
15 minutes to a few hours, and allows for easy manipulation 
and transfer of cells using magnetic forces [123]. Moreover, 
this method is highly adaptable to mobile device-based 
imaging, which significantly enhances accuracy and 
throughput. Furthermore, in the context of hyperthermia-
based cancer treatments, magnetic bioprinting plays a 
pivotal role. The inclusion of magnetic particles in a 
hydrogel matrix enables precise control over the delivery of 
therapeutic agents, allowing for targeted treatment of cancer 
cells. This approach capitalizes on the ability of magnetic 
particles to generate heat in the presence of an alternating 
magnetic field, selectively damaging or destroying cancer 
cells [124].

Coaxial bioprinting

Coaxial bioprinting, an extrusion-based 3D bioprinting 
technology, has emerged as a promising method in tissue 
engineering and regenerative medicine [125]. This technique 
involves the simultaneous extrusion of multiple bioinks 
through coaxial nozzles to create strands with distinct 
compartments, including an inner core and an outer shell. It 
offers several advantages in creating complex hierarchical 
tubular structures with tunable biological and mechanical 
properties [126]. The core and shell materials used in 
coaxial bioprinting must meet specific criteria [127-128]. 
Firstly, they should exhibit low viscosity to minimize shear 
force-induced damage to cells during the printing process, 
thus facilitating the printing of biologically suitable tissues. 
Secondly, these materials should demonstrate degradation 
behavior that can be controlled in both short-term and long-
term functions. The resulting degradation products should 
be non-toxic and harmless, ensuring the normal function of 
the tissue without sudden collapse at the graft site [129]. 
Additionally, they should possess certain mechanical 
properties to meet the stretching and compression 
requirements of the implant site [130]. Coaxial bioprinting 
excels in generating hierarchical tubular structures, a 
crucial aspect in tissue engineering. By utilizing sacrificial 
materials in the core, it enables the creation of hollow or 
tubular structures that mimic natural vascular networks 
[131]. This is pivotal in ensuring the viability of cells 
within the construct. Moreover, coaxial bioprinting allows 
for the combination of different biomaterials, each serving 
a specific function. For instance, a softer, biocompatible 
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material can be used for the core to support cell viability, 
while a stronger material forms the shell for mechanical 
support [132]. This versatility is essential for success in 
tissue engineering applications. Despite its advantages, 
coaxial bioprinting is not without its challenges. Alginate, 
a commonly used material in coaxial bioprinting, may 
have limitations in supporting normal cell growth and 
development due to its poor biological performance [126]. 
Achieving optimal printability and shape fidelity, especially 
with different properties of biomaterials in the core and 
shell, may require careful parameter optimization.

FRESH bioprinting

Freeform Reversible Embedding of Suspended Hydrogels 
(FRESH) bioprinting addresses a critical challenge in 
3D printing soft structures, which is their tendency to 
collapse during the printing process [133]. This prompted 
the development of gel-based support baths, breaking the 
link between gelation time and mechanics. These baths 
physically support the extrusion printing of soft hydrogels, 
enabling the creation of stiffer scaffolds that can self-
support post-support bath removal [134]. While natural 
polymers like alginate, collagen, and GelMA have been 
commonly used in FRESH bioprinting, there is potential 
for the utilization of synthetic polymer-based bioinks to 
gain control over interfacial, mechanical, and degradation 
properties of the printed scaffolds [135-136]. However, there 
has been limited success in 3D printing such bioinks using 
an embedded printing strategy [137]. Notable exceptions 
include the work by Hull et al. with their FRESH bioprinting 
of UNIversal Orthogonal Network (UNION) bioinks, based 
on Strain-Promoted Azide-Alkyne Cycloaddition (SPAAC) 
[138]. It’s worth noting that SPAAC click chemistry, while 
effective, is inherently nonreversible under physiological 
conditions, which may present challenges in the long-term 
degradation of synthetic polymer-based bioinks [139-
140]. A significant advancement in FRESH v2.0 lies in 
the preparation of the support bath. Instead of pulverizing 
large gelatin blocks in a consumer-grade blender, support 
bath particles are now generated through a coacervation 
approach. This results in smaller, more spherical, and more 
uniform microparticles, enhancing print resolution. With 
FRESH v2.0, the authors have achieved impressive results, 
printing individual collagen filaments as thin as 20 μm in 
diameter [141]. The FRESH technique has made substantial 
contributions to the field of bioprinting, allowing for the 
creation of complex 3D tissue and organ models with a wide 
range of biocompatible hydrogel and cell-laden bioinks. 
This method’s unique aspects include the viscoplastic 
behavior of the support bath, customizable aqueous phase 

compatible with various gelation mechanisms, and support 
bath liquification for nondestructive print release under 
biologically compatible conditions [142]. It has found 
applications in printing functional and cellularized tissue 
constructs, medical devices, and even organs at the scale of 
ventricle-like heart chambers [143-144].

Microfluidic bioprinting

Microfluidic bioprinting represents a significant 
advancement at the intersection of engineering, physics, 
chemistry, and biotechnology. This technology leverages the 
precise manipulation of minute volumes of fluids, cells, and 
molecules within microchannels, ranging from nanometers 
to hundreds of micrometers [145]. Microfluidic systems 
have found applications in various fields, including disease 
diagnostics, drug delivery, and biosensing [146-147]. When 
applied to tissue engineering, the integration of microfluidic 
techniques with bioprinting has led to notable progress 
in the fabrication of complex tissue constructs [148]. 
Microfluidic chips, characterized by intricate networks of 
microchannels, enable the creation of zonally heterogeneous 
tissue constructs, a crucial feature for accurately replicating 
the complexity and functionality of native tissues, which 
rarely consist of homogenous cell populations [149-150]. 
These chips have been effectively incorporated into various 
bioprinting techniques, including Digital Light Processing 
(DLP) bioprinting and Extrusion-Based Bioprinting (EBB) 
[151-152]. DLP bioprinting, for example, involves a closed 
chamber microfluidic chip that facilitates rapid switching 
between different bioinks, enabling the creation of multi-
layered structures and multi-material tissue patterns [153]. 
Additionally, EBB bioprinting, traditionally involving 
layer-by-layer extrusion of bioink, was enhanced by 
integrating a microfluidic chip to achieve laminar flow and 
facilitate smooth transitions between different biomaterials 
[154]. Furthermore, the unification of microfluidic systems 
with bioprinting techniques has yielded innovative 
technologies for generating 3D tissue models, organ-
on-a-chip devices, and lab-on-a-chip platforms [155-
156]. Amir et al. demonstrated a stereolithography-based 
bioprinting platform employing a microfluidic device to 
fabricate multicomponent hydrogel constructs, thereby 
enabling precise control over the deposition of different 
bioinks [157]. Ghorbanian et al. developed a microfluidic 
direct writer capable of delivering two different alginate 
gel solutions alternatively, allowing for the fabrication 
of complex 3D hydrogel constructs [158]. Hardin et al. 
designed a microfluidic printhead that facilitated the 
printing of multiple viscoelastic inks, providing a versatile 
approach for creating heterogeneous tissue structures [159]. 
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Despite these promising advancements, challenges persist in 
the field of microfluidic-enhanced bioprinting. Issues such 
as scaling up tissue structures, handling fragile hydrogel 
fibers, and achieving desired geometrical outcomes remain 
areas of active research [160]. Integration of microfluidic 
systems within AM-assisted extrusion bioprinters is a 
recent trend aimed at addressing these challenges, enabling 
layered scale-up of precise tissue constructs [161-162]. 
Additionally, ongoing research focuses on improving 
the speed, versatility, and material compatibility of 
microfluidic-enhanced bioprinting technologies [163].

Volumetric bioprinting

Volumetric bioprinting is a pioneering approach empowers 
the swift creation of 3D constructs, spanning diverse 
sizes and intricate architectures, within an astonishingly 
compressed temporal window, ranging from mere seconds 
to tens of seconds [164]. At its fundamental core, volumetric 
additive manufacturing hinges on the projection of an array 
of 2D patterned optical light fields within a volume of a 
photosensitive polymer. These 2D light patterns accumulate 
cumulatively to yield an optical 3D dose distribution, 
instigating the polymerization of the irradiated material 
into the desired object [165]. In its initial conceptualization, 
this method gave rise to rudimentary objects by irradiating 
a reservoir of photosensitive polymer with a superposition 
of multiple beams from fixed, predetermined orientations 
[166]. Subsequent strides in volumetric printing, inspired by 
Computed Tomography (CT), have incorporated dynamic 
2D light fields, enabling the production of more intricate 
and complex objects [167]. Notable headway has been made 
with technical photopolymers like acrylates and elastomeric 
resins, showcasing the capacity to resolve features as fine 
as 80 µm [168]. Volumetric bioprinting holds immense 
promise in advancing medicine by facilitating the rapid 
creation of large-scale structures. Integrating it with other 
printing methods such as 4D bioprinting may leverage 
their individual strengths, offering a more comprehensive 
approach to tissue engineering and biofabrication [169].

4D bioprinting

4D bioprinting is an advancement in fabrication 
technology, building upon the principles of 3D printing by 
introducing an additional dimension, referred to as time 
[170]. This innovation was pioneered by Tibbits at the 
Massachusetts Institute of Technology, who demonstrated 
its potential by printing prototypes that could self-transform 
in response to external stimuli. In this scope, a printed 
strand initially straightened itself into the letters “MIT” 
when immersed in water [171]. Qi and other research 

groups at the Georgia Institute of Technology have also 
contributed to the development of 4D printing [172]. Since 
its inception, 4D printing has garnered significant attention, 
leading to a proliferation of published research papers. 
This technique has transcended research boundaries and 
found applications in diverse fields such as education, art, 
industry, and biomedicine [173]. Recently, 4D printing has 
evolved into 4D bioprinting, a groundbreaking concept that 
involves printing biocompatible materials or living cells 
into complex constructs [174]. This extension of 4D printing 
is characterized by the ability of the printed bioconstruct 
to undergo changes in size, shape, and functionality over 
time. This transformation can be either spontaneous or 
triggered by an external stimulus [175]. Unlike traditional 
3D bioprinting, 4D bioprinting offers solutions to some of 
its limitations. For instance, 3D bioprinting struggles with 
fabricating complex structures like blood vessels, due to the 
risk of collapse [176]. 4D bioprinting, on the other hand, 
provides a pathway to overcome this challenge by printing 
initially flat biological structures and then inducing the 
transformation into functional tubular structures, like blood 
vessels, through external stimuli [177]. The applications 
of 4D bioprinting are vast and promising, particularly in 
fields such as tissue engineering, drug delivery, and wound 
repair [178-180]. One noteworthy application is in vessel 
fabrication, where 4D bioprinting enables the creation of 
intricate structures that would be challenging or impossible 
to achieve using conventional methods [181]. To achieve 
these transformations, 4D bioprinting relies on stimulus-
responsive or “smart” materials. These materials react to 
various stimuli, including physical (e.g., water, temperature, 
light, electric field, and magnetic field), chemical (e.g., pH 
value and ion concentration), or biological (e.g., glucose 
and enzymes) signals [182]. Therefore, water-responsive 
materials can induce swelling, twisting, folding, and other 
deformations when exposed to moisture [183]. Temperature-
responsive materials, like shape memory alloys, enable 
reversible deformations, expanding the possibilities for 
4D bioprinting [184]. Electric, light, and magnetic fields 
are also utilized as stimuli, influencing the behavior of 
polyelectrolytes and composites of magnetic nanoparticles 
[185]. Additionally, chemical and biological stimuli, such 
as pH value, ion concentration, glucose, and enzymes, 
play a vital role in triggering transformations in printed 
structures [186]. Various printing techniques, including 
extrusion-based, inkjet-based, and laser-based methods, can 
also be employed for 4D bioprinting [187-188]. In terms 
of material composition, 4D bioprinted constructs can be 
categorized into single-material structures and multiple-
material structures. Single-material structures involve 
using a single material that deforms due to either spatially 
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nonuniform designs or nonuniform external stimuli 
[189]. Conversely, multiple-material structures employ a 
combination of materials with varying responses to external 
stimuli, enabling programmable deformations [190]. 
Recent advances in 4D bioprinting have demonstrated 
its potential in biomedical applications. Smart stents, 
responsive to stimuli like temperature and pH changes, 
offer promising solutions for treating vascular stenosis and 
other endoluminal body structures [190]. Moreover, 4D 
bioprinting shows great promise in drug delivery systems, 
enabling precise control over drug release in response to 
physiological changes [191]. 4D bioprinting has been also 
applied to develop shape-changing scaffolds for bone repair 
and tissue engineering, as well as adaptive conduits for 
nerve regeneration [192-193].

Electrospinning bioprinting

Electrospinning is a highly versatile technique employed 
in tissue engineering, allowing for the creation of micro-/
nanofibers from polymer solutions or melts through the 
manipulation of electrostatic forces [194]. This process 
necessitates a setup comprising a syringe containing the 
polymer solution connected to a metallic needle, a syringe 
pump for flow rate regulation, a high voltage power supply, 
and a metallic collector. When voltage is applied between 
the syringe and collector, the solution extruded through 
the needle forms an electrically charged jet, which is 
subsequently drawn toward the collector. As the solvent 
evaporates during its travel, the jet’s diameter undergoes 
significant reduction, culminating in the deposition of 
a mass of fibers on the metallic collector [195]. This 
methodology has found application in diverse areas such 
as vascular grafts, osteochondral tissue engineering, bone 
substitutes, and wound healing strategies [196-198]. 
Notably, electrospun fibers integrated within 3D-printed 
structures have demonstrated the controlled delivery of 
bioactive agents [199-200]. Noteworthy combinations 
include gelatin and collagen electrospun fibers with 
3D-bioprinted scaffolds, as well as urinary bladder matrix 
electrospun meshes integrated with 3D-bioprinted structures 
for specialized culture devices [201]. The combination 
of 3D bioprinting and electrospinning offers a promising 
strategy for fabricating scaffolds with controlled pore 
structures and nano-scale features, which closely mimic the 
natural ECM morphology and size [202]. Recently, there 
has been a concerted effort to understand and optimize the 
interactions between cells and scaffolds for effective tissue 
regeneration, particularly in contexts like skeletal muscle 
[203]. Factors such as scaffold thickness, hydrophilicity, 
porosity, roughness, stiffness, surface charges, and 

incorporation of cell attachment moieties (RGD) play 
pivotal roles in directing cellular behaviors critical for tissue 
regeneration [204]. Microgrooves in scaffolds have been 
demonstrated to promote cellular alignment and myofiber 
formation, while mechanical and electroconductive 
properties are crucial for mimicking native muscle tissue 
[205]. To enhance the mechanical properties and structural 
complexity of scaffolds for skeletal muscle regeneration, a 
combination of electrospinning and 3D printing has shown 
great promise [206]. This approach offers constructs with 
a large surface-area-to-volume ratio, improved mechanical 
properties, better interconnectivity, high porosity, enhanced 
cell attachment, unidirectional cell alignment, and fibrous 
tissue formation. Additionally, the integration of melt 
electrospun meshes with 3D bioprinted hydrogel constructs 
holds potential for achieving heterogeneous mechanical 
characteristics akin to native articular cartilage [207].

Recent Bioprinter Technologies

In recent years, the field of bioprinting methods 
and bioprinter systems have witnessed remarkable 
advancements, revolutionizing the way biological tissues 
and organs are fabricated for research, pharmaceutical 
testing, and potentially clinical applications [208] 
(Supplement 1). Low-cost bioprinters employing 
microextrusion-based technology have gained traction due 
to their affordability and accessibility [148]. Moreover, the 
integration of microfluidic components offers unparalleled 
control over the bio-printing process, opening new avenues 
for tissue fabrication. Support-free multiaxial printing, 
offering increased geometric complexity without the 
need for support structures, represents another promising 
trend. While currently prevalent in high-end systems, this 
technology holds immense potential for in vivo applications. 
High-resolution printing using focused light, a departure 
from traditional extrusion-based methods, offers substantial 
improvements in speed, resolution, and cell viability. 
As new developments like Computed Axial Lithography 
(CAL) enter the bioprinting arena, existing technologies 
are poised to become more affordable and integrated into 
low-cost systems [167,209]. The future of bioprinting is 
poised for significant evolution, with several key trends 
shaping the landscape. Modular print heads are emerging 
as a transformative feature, allowing users to interchange 
printing tools for different bio-inks and technologies [210]. 
This modularity extends the capabilities of bioprinters, 
enhancing their versatility at a relatively minor additional 
investment. Furthermore, microfluidic technologies, 
currently present in high-end systems, are expected to 
become more accessible as costs decrease, revolutionizing 

https://medliber.com/journal/mrm


MedLiber Regener. Med. | www.medliber.com Volume 1 | Issue 132

Aydin L

low-cost bioprinting [211]. Figure 1 illustrates the recent 
bioprinter technologies and working principle.

Clinical Applications of  Current Methods

3D bioprinting holds immense promise in reshaping the 
landscape of clinical applications. The trajectory of its 
advancement is driven by a confluence of critical medical 
needs, including the demands of aging populations, the 
scarcity of organ donors, and the imperative to reduce 
reliance on animal testing in therapeutic development. As 
bioprinting technology matures, it stands at the forefront of 

regenerative medicine, offering solutions to repair, replace, 
or regenerate a spectrum of tissues. These encompass vital 
structures like cartilage, bone, skin, and periodontal tissues, 
alongside the intricate vascular and cardiovascular systems 
[212]. This capability transcends the boundaries of traditional 
medicine, heralding a new era where patient-specific drug 
screening and disease modeling can be conducted on 
bioprinted tissues [213]. The potential to customize drug 
responses based on individual patient profiles is poised to 
revolutionize pharmaceutical interventions. Furthermore, 
bioprinting is poised to play a pivotal role in transplantation 

Figure 1: Recent bioprinter technologies.
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medicine. The ability to fabricate full or partial organs 
addresses a longstanding global challenge - the shortage of 
viable organ donors. This breakthrough, if realized, could 
significantly reduce transplant waiting lists and alleviate the 
suffering of countless patients. Additionally, the integration 
of 3D bioprinting with other advanced techniques, such as 
microfluidics and computed axial lithography, is expanding 
the horizons of what can be achieved. This convergence of 
technologies is particularly promising in the fabrication of 
zonally heterogeneous tissue constructs and the creation 
of support-free, volumetric geometries. In parallel, the 
emergence of 3D bioprinting for medications stands as a 
testament to the technology’s potential to individualize 
treatment. Personalized dosages, quick-dissolving pills, and 
the elimination of intolerant fillers represent a paradigm 
shift in pharmaceutical manufacturing. Medications like 
levetiracetam exemplify the transformative potential of 
3D-printed drugs, offering improved therapeutic outcomes 
for patients [214]. In the realm of clinical education, 3D 
bioprinting is proving to be an invaluable tool. Anatomical 
models created through bioprinting serve as powerful 
educational aids, enhancing the training of clinicians 
across diverse specialties. From neurosurgery to vascular 
surgery, these models provide a tangible platform for 
practicing complex procedures and visualizing intricate 
anatomical structures. Such advancements not only benefit 
trainee clinicians but also serve as valuable resources 
for experienced practitioners preparing for intricate 
interventions [215]. Moreover, these technologies extend 
their impact to patient education [216-217]. Complex 
medical conditions, like congenital heart disease or liver 
cancer, can be visually and tactically explained to patients 
through custom-printed anatomical models. This not only 
fosters a deeper understanding of their condition but also 
facilitates more informed consent processes. Patients 
can now actively engage in their healthcare decisions, 
empowered by a clearer comprehension of their own 
anatomy and the proposed medical interventions. Beyond 
these transformative applications, 3D bioprinting is 
revolutionizing imaging technologies [218]. Specially 
designed objects, known as phantoms, are crafted to 
precisely mimic human tissues. These phantoms serve as 
essential tools for testing and calibrating medical imaging 
systems, ensuring their accuracy and reliability in clinical 
settings. The clinical applications of 3D bioprinting are 
poised to redefine the landscape of healthcare. From tissue 
regeneration to drug personalization, from transplantation 
breakthroughs to enhanced medical education, the potential 
impact of this technology is boundless. As research 
continues to push boundaries and technology advances, 
we stand on the brink of a new era in medicine, one where 

individualized, precision healthcare is not just an aspiration, 
but a tangible reality.

Limitations of  Current Systems

Each bioprinting technique offers distinct advantages and 
encounters specific challenges. Coaxial bioprinting, known 
for its proficiency in creating intricate tubular structures, 
excels in combining diverse biomaterials for specialized 
functions. This method is particularly adept at emulating 
natural vascular networks, a critical factor for sustaining 
cell viability within constructs. However, it grapples with 
potential limitations, particularly with commonly utilized 
materials like alginate, which may pose constraints on 
supporting optimal cell growth. In contrast, FRESH 
bioprinting addresses a prevalent issue in 3D printing-
the susceptibility of soft structures to collapse during the 
printing process. By employing gel-based support baths, 
it enables the fabrication of stiffer scaffolds, obviating 
the need for additional support structures. This innovative 
feature significantly streamlines the printing process. 
However, challenges persist in the 3D printing of synthetic 
polymer-based bioinks using an embedded strategy. This 
method demands continued research to refine its application. 
Microfluidic bioprinting, situated at the convergence of 
engineering, physics, chemistry, and biotechnology, allows 
for the meticulous manipulation of fluids and molecules 
within microchannels. This integration has propelled 
significant advancements in fabricating tissue constructs 
with accurately replicated complexity and functionality. 
The intricate networks of microchannels within microfluidic 
chips play a pivotal role in creating tissues with finely tuned 
properties. Nonetheless, ongoing research is essential to 
enhance the speed, versatility, and material compatibility 
of this bioprinting technology. Volumetric bioprinting 
marks a transformative leap in additive manufacturing, 
enabling the rapid fabrication of cell-laden constructs 
with diverse sizes and intricate architectures. This method 
holds immense promise, particularly in the creation of 
large-scale functional organs. However, its full potential 
hinges on seamless integration with other techniques and 
further development of stimulus-responsive materials. 4D 
bioprinting, introducing the dimension of time, has emerged 
as a solution to the challenges faced by traditional 3D 
bioprinting, especially in fabricating complex structures 
like blood vessels. Its potential applications span tissue 
engineering, drug delivery, and wound repair, but its efficacy 
relies on the availability of stimulus-responsive materials. 
Furthermore, the integration of electrospinning with 3D 
bioprinting has shown remarkable promise in enhancing 
scaffold properties for applications in skeletal muscle tissue 
engineering. The combination of electrospun meshes with 

https://medliber.com/journal/mrm


MedLiber Regener. Med. | www.medliber.com Volume 1 | Issue 134

Aydin L

Table 1: A comprehensive view of commercially available bioprinters.

3D bioprinted hydrogel constructs yields structures with 
improved mechanical properties, cell attachment, and tissue 
formation. However, precise parameter tuning remains 
critical for optimal results. While each bioprinting method 
presents promising avenues in tissue engineering and 
regenerative medicine, ongoing research and innovation are 
imperative to surmount their respective challenges and fully 
harness their potential.

Future Perspectives

The evaluation covered a diverse range of bioprinter 
models, each with unique printing technologies, print head 
configurations, and XYZ positional accuracy. Build volume 
specifications were examined to understand the bioprinters’ 

capacity for intricate structures. Temperature control 
features for both the print bed and head were assessed for 
accommodating various biomaterials. The provision of a 
sterile environment was considered crucial for construct 
integrity and viability. User-friendly interfaces and display 
options were evaluated for ease of operation. Photocuring 
capabilities were examined for compatibility with light-
curable materials. The inclusion of a camera system for 
real-time monitoring and quality control was also assessed. 
Calibration methods were investigated to determine 
precision and accuracy. For precise and up-to-date details, 
researchers are advised to consult official company 
documentation. Refer to Table 1 for a comprehensive view 
of bioprinters according to supplier datasheets.

Company Model Technology Print 
Heads

XYZ Accura-
cy (μm)

Build Volume 
(mm)

Bed 
Temp. 
(°C)

Head 
Temp. 
(°C)

Sterilization On-board 
Display

Photocur-
ing (nm)

On-
board 
Cam-

era

Calibra-
tion

CELLINK

Inkredible+
Extru-

sion-Based 
(Pneumatic)

2 10/10/100 130x80x100 up to 65 Up to 130
Air: HEPA 

13 Yes 365, 405 No Manual

UV: None

BIO X
Extru-

sion-Based 
(Pneumatic)

3 1/1/2001 130x90x70 4 to 65 4 to 250

Air: HEPA 
14 Integrated 

Display, 
DNA 

Studio

365, 405, 
485, 520 No

Manual 
and Auto-

matic
UV: UV-C 
(275nm), 
20mW

BIO X6
Extru-

sion-Based 
(Pneumatic)

6 1/1/2001 128×90×90 4 to 65 4 to 250

Air: 2xHEPA 
14

Tablet or 
Computer

365, 405, 
485, 520 No Automatic

UV: UV-C 
(275nm), 
30mW

EnvisionTEC 
3D

3D-Bioplotter 
Developer 

Series 

Modular Tool 
Changer 3 1/1/2001 150x150x150 -10 to 80

Low: 0 
to 70 Particle filter 

only No 365 Yes Automatic
High: 30 
to 250

3D-Bioplotter 
Manufacturer 

Series

Modular Tool 
Changer 5 1/1/2001 150x150x150 -10 to 80

Low: 0 
to 70 Particle and 

sterile filter No 365 Stand-
ard Automatic

High: 30 
to 250

RegenHU

R-GEN 100 Modular 
Print Heads 5 0.5/0.5/0.5 130x90x65 5 to 80

Modular: 
4 to 80

No No 365, 405 Yes Automatic
Melt: up 
to 240

R-GEN 200 Modular 
Print Heads 5 0.5/0.5/0.5 130x90x65 5 to 80

Modular: 
4 to 80

Class II BSC Yes 365, 405 Yes Automatic
Melt: up 
to 240
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Advanced 
Solution

BioAssembly-
Bot 200

Modular 
Print Heads 

(4-axis 5 Unavailable 27.9x17.8x6.9 10 to 60 -4 to 150 Air: HEPA 
filter Touch Pad 365, 405 Yes Automatic

Robotic Arm)

BioAssembly-
Bot 400

Modular 
Print Heads 

(6-axis 8 Unavailable 30.5x25.4x17.8 10 to 60 -4 to 150

Air: 99.97% 
of particles 
to 0.3 µ (w/

HEPA)

Touch Pad 365, 405 Yes Automatic

Robotic Arm)

Regemat 3D

BIO V1 Modular 
Print Heads 4 150x150x0.4 150x160x110 -20 to 

100

-20 to 100,

No No 365, 385, 
405 No Automatic

Thermo-
plastic 

extruder: 
up to 250

REG4LIFE Modular 
Print Heads 7 150x150x0.4 120x120x100 -20 to 

100

-20 to 100, 
Thermo-
plastic 

extruder: 
up to 250

No No 365, 385, 
405 No Automatic

Allevi

Allevi 1
Extru-

sion-Based 
(Pneumatic)

1 7.5x7.5x1 90x60x130 No 4 to 160 No No 365, 405 No Automatic

Allevi 2
Extru-

sion-Based 
(Pneumatic)

2 5x5x1 90x60x130 No

E1: Up to 
160

No No 365, 405 No Automatic
E2: Up 
to 70

Allevi 3
Extru-

sion-Based 
(Pneumatic)

3 1x1x1 90x60x130 Up to 60 4 to 160 No No 365, 405 No Automatic

Aspect Bio-
systems RX1 Modular 

Print Heads 6 0.5x0.5x0.5 90x150x70 No No No No No Yes Automatic

Axolotl 
Biosystems

Axo-A3 Modular 
Print Heads 3 1x1x1 130x90x80 Down to 

-10 3 to 265
Air: HEPA 

filter No 365, 395, 
405

Op-
tional Automatic

UV: UV-C

Axo-A6 Modular 
Print Heads 6 1x1x1 130x90x80 Down to 

-10 3 to 265
Air: HEPA 

filter No 365, 395, 
405

Op-
tional Automatic

UV: UV-C

Brinter

Brinter CORE Modular 
Print Heads 4 3x3x3 150x110x40 Up to 

100 4 to 250 UV: UV-C 
(265nm) No 365, 405, 

450 Yes Automatic

Brinter ONE Modular Tool 
Changer 4 3x3x3 304x174x80 4 to 100 4 to 250 UV: UV-C 

(265nm) No 365, 405, 
450 Yes Automatic

GeSim BioScaffolder
Extru-

sion-Based 
Bioprinter

3 2x2x10 124.4x345.4x40.6 Optional

4 to 80,

No No Optional Yes AutomaticUp to 190,

Up to 250
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Bioprinting, a revolutionary technology in tissue 
engineering and regenerative medicine, encompasses 
several cutting-edge methods, each with its unique strengths 
and challenges. Among these, the Freeform Reversible 
Embedding of Suspended Hydrogels (FRESH) bioprinting 
technique addresses a critical challenge in 3D printing soft 
structures. By utilizing gel-based support baths, it enables 
the creation of stiffer scaffolds and allows for post-support 
bath removal. This breakthrough has paved the way for 
the fabrication of complex 3D tissue and organ models. 
Natural polymers like alginate, collagen, and GelMA have 
been commonly used in FRESH bioprinting, but there is a 
growing potential for the utilization of synthetic polymer-
based bioinks. However, challenges persist in 3D printing 
such bioinks using an embedded strategy, with notable 
exceptions like the work by Hull et al. using strain-
promoted azide-alkyne cycloaddition (SPAAC) chemistry 
[138]. Although SPAAC click chemistry is effective, it is 
inherently nonreversible under physiological conditions, 
which may pose challenges in long-term degradation 
[139-140]. Microfluidic bioprinting, at the crossroads 
of engineering, physics, chemistry, and biotechnology, 
allows for precise manipulation of fluids, cells, and 
molecules within microchannels. This integration has led 
to significant progress in fabricating zonally heterogeneous 
tissue constructs [149-150]. The intricate networks 
of microchannels in microfluidic chips are pivotal in 
creating tissues with accurately replicated complexity and 
functionality. Techniques like DLP bioprinting and EBB 
have been enhanced with the integration of microfluidic 
chips, enabling the creation of multi-layered structures 
and facilitating smooth transitions between different 
biomaterials. Ongoing research aims to improve the speed, 
versatility, and material compatibility of microfluidic-

Fluicell Biopixlar Robot Arm 3 2x2x2 35/50 standard 
dish holders

Unavail-
able

Unavail-
able Unavailable No 370 to 680

In-
verted 
Micro-
scope 

Automatic

Poietis NGB-R Bio-
printer

Modular 
Print Heads 

(6-axis robot-
ic arm)

3 10x10x10 6-well and 12-well 
plates Optional 30 to 50 Class II BSC Yes 365, 405 Op-

tional Automatic

MicroFab

Jetlab 4 Modular 
Print Heads 4 30x30x30 200x150x50 Up to 

100 Optional Optional No Optional Yes Automatic

Jetlab II Modular 
Print Heads 4 4x4x4 300x300x40 Up to 

100 Optional Optional No Optional Yes Automatic

enhanced bioprinting technologies [163]. Additionally, 
integration of microfluidic systems within AM-assisted 
extrusion bioprinters is a promising trend to address 
challenges like scaling up tissue structures and achieving 
desired geometrical outcomes. Volumetric printing marks 
a transformative leap in additive manufacturing, allowing 
for the rapid fabrication with diverse sizes and intricate 
architectures. The future of volumetric bioprinting in 
medicine is promising especially in the creation of large-
scale functional organs. However, integration with other 
methods and further development of stimulus-responsive 
materials may be more useful in fully realizing its 
potential. Similarly, 4D bioprinting overcomes some of the 
limitations faced by traditional 3D bioprinting, particularly 
in fabricating complex structures like blood vessels [175]. 
The potential applications of 4D bioprinting in tissue 
engineering, drug delivery, and wound repair are extensive 
and promising. Furthermore, electrospinning integration 
with 3D bioprinting has shown promise in enhancing 
scaffold properties for applications in skeletal muscle tissue 
engineering [205]. The combination of electrospun meshes 
with 3D bioprinted hydrogel constructs offers constructs 
with improved mechanical properties, cell attachment, and 
tissue formation.

Recent advancements in bioprinter technologies have led 
to a range of low-cost models to high-end systems. Low-cost 
bioprinters with microextrusion-based technology provide 
accessible options with suitable resolution for various 
applications [148]. High-end droplet-based bioprinters 
excel in precision and performance, offering larger build 
spaces for complex tissue production. Emerging trends, 
such as multi-material printing, in situ bioprinting, and AI 
integration, are poised to further enhance the capabilities of 
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bioprinting technologies [14]. Each bioprinting technique 
brings unique advantages and challenges, necessitating 
ongoing research and innovation. On the other hand, 
bioprinters have witnessed an extraordinary evolution, 
offering a diverse range of precision instruments tailored 
to specific research needs (Supplement 1, Data Sources). 
CELLINK’s Inkredible+ bioprinter redefines the boundaries 
of accuracy with an XYZ precision of 10x10x100 μm. 
This exceptional precision grants researchers the power 
to construct tissue models with unparalleled intricacy and 
accuracy. EnvisionTEC’s 3D-Bioplotter Developer Series 
ascends to even greater heights, boasting a precision of 
1x1x1 μm. This staggering precision paves the way for 
the creation of highly detailed and intricately structured 
tissue constructs, setting a new standard for bioprinting 
precision. RegenHU’s R-GEN 100, a paragon of versatility, 
melds precision with adaptability. Featuring a precision of 
0.5x0.5x0.5 μm and a spacious build volume of 130x90x65 
mm, this bioprinter embodies a remarkable capacity to 
cater to an extensive spectrum of tissue types. Its versatility 
positions it as an invaluable instrument for researchers 
navigating the diverse landscape of tissue engineering. 
Taking a departure from convention, Advanced Solution’s 
BioAssemblyBot 200 harnesses the formidable capabilities 
of a 4-axis robotic arm, introducing a new dimension of 
motion control precision. This innovative feature empowers 
the fabrication of intricate tissue structures within its 
27.9x17.8x6.9 mm build volume. The system’s robotic arm 
introduces an unparalleled level of flexibility and precision, 
proving particularly advantageous for intricate tissue 
engineering applications. Regemat 3D’s BIO V1 assumes 
a prominent role with its impressive XYZ precision of 
150x150x0.4 μm. This high degree of precision enables 
the creation of intricate and detailed tissue constructs 
within its substantial build volume of 150x160x110 mm. 
The BIO V1 stands as an invaluable tool for researchers 
seeking to replicate the intricate architecture of native 
tissues. Although compact in size, Allevi’s Allevi 1 upholds 
impressive precision, boasting a precision of 7.5x7.5x1 
μm. This precision ensures accuracy in the fabrication of 
smaller tissue models within its build volume of 90x60x130 
mm. Despite its smaller footprint, the Allevi 1 proves to 
be a valuable asset for researchers focused on creating 
precise and detailed tissue constructs. Beyond precision, the 
sterilization capabilities offered by these bioprinting systems 

are paramount. Poietis’s NGB-R Bioprinter, equipped with 
Class II BSC sterilization, ensures aseptic conditions that are 
indispensable for sensitive applications in tissue engineering 
and regenerative medicine. Brinter CORE and Brinter ONE 
leverage UV-C photocuring at 265nm, a wavelength known 
for its effectiveness in initiating the crosslinking of certain 
bio-inks. This feature augments the structural integrity of 
the printed tissues, ensuring they maintain their form and 
function over time. Additionally, several systems offer 
automated calibration features, streamlining the setup 
process and ensuring consistent and reliable printing results. 
The CELLINK BIO X6 distinguishes itself with support for 
up to six different bio-inks, a capability of immense value for 
researchers aiming to create complex, multi-material tissue 
constructs that closely emulate the heterogeneity found in 
native tissues. In terms of build volume, EnvisionTEC’s 
3D-Bioplotter, RegenHU’s R-GEN 100, and RegenHU’s 
R-GEN 200 offer expansive workspaces. These ample 
build volumes provide abundant room for fabricating large 
and intricate tissue structures, opening up new horizons 
for tissue engineering applications. Furthermore, precise 
temperature control proves to be a critical feature when 
working with temperature-sensitive bio-inks and materials. 
This feature is offered by several systems, such as advanced 
solution’s BioAssemblyBot 200 and 400, ensuring that the 
printing process is meticulously optimized for the specific 
materials being used. 

CONCLUSION

The review provides valuable insights into the diverse 
range of bioprinting methods, systems and their collective 
potential to advance tissue engineering and regenerative 
medicine. It highlights the potential for integration with 
other printing methods and the development of biomimetic 
materials to further enhance the capabilities of bioprinting 
technologies. This collective array of capabilities is 
propelling the field forward, ushering in a new era of 
possibilities for creating functional and lifelike biological 
constructs.
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