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ABSTRACT

Aging is a continuous physiological process that results in senescence or a 
decline in biological functions. This process is triggered by changes in the body’s 
ability to respond to stress and to adapt to metabolic shifts. As a natural course 
of events, it leads to the emergence of various health issues and limitations 
in the capacity to repair tissues and organs. Contemporary medicine aims to 
delay or modify this process and minimize the consequences of alterations in 
physical activity, nutritional parameters, and risks. The success of this protective 
approach is largely dependent on the restoration of the production of anti-
aging agents. The klotho protein is one such agent and has fundamental 
importance in this regard. A decline in klotho protein levels has been clearly 
linked to aging events, and an increase in its levels has a significant impact on 
the health of older individuals. Klotho deficiency has been observed in several 
experimental and clinical disease models. Restoring pre-aging conditions can 
enhance the regenerative capacity of organisms, which is why klotho protein 
can be considered for use in regenerative medicine processes across different 
conditions and not just in older patients. This paper provides an overview of the 
characteristics and functions of the klotho protein and suggests its potential 
application in regenerative medicine.
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INTRODUCTION

In 1997, Kuro-O M, et al. and colleagues discovered the klotho gene, which encodes an 
aging-suppressor protein [1]. Animals with a mutation of this gene within chromosome 13 
displayed signs of premature aging and a shortened lifespan. A year later, the human klotho 
gene was identified, showing a homology with mouse genes of over 80%. Thus, findings in 
mice provide valuable information for human translation [2].

There are three klotho subfamilies: α-klotho, β-klotho, and γ-klotho. α-klotho is a co-
receptor of Fibroblast Growth Factor (FGF) 23 which is subject to ectodomain shedding 
to release soluble klotho [3,4]. β-klotho serves as a co-receptor for FGF19 and FGF21. 
[5] γ-klotho is expressed in the kidneys and skin with its functions yet to be defined [6,7]. 
α-klotho is a membrane-bound protein that is linked to β-glucuronidase and is present in 
the human Cerebrospinal Fluid (CSF), blood plasma, and urine. It is known to promote 
longevity and delay the onset of multiple systemic aging in both mice and humans.

Unless otherwise specified, the term “klotho” generally refers to the α-klotho subfamily, 
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which functions as a soluble endocrine or a paracrine factor.

Overexpression of klotho results in suppression of aging-
associated conditions and a significant delay in animal 
death [8]. Klotho secretion decreases with age [9].

KLOTHO ACTION MECHANISMS

The klotho transmembrane protein cleavage by 
α-secretases is subsequently released into the systemic 
circulation, cerebrospinal fluid, and urine [10-13]. The 
secreted protein is known as soluble klotho [14]. This is the 
predominant klotho gene product and acts as a paracrine or 
endocrine factor that mediates several key klotho effects. 
FGF23 is a potent inhibitor of klotho transcription [15]. In 
a similar manner, inflammatory processes lead to a decrease 
in klotho expression, and the protein has anti-inflammatory 
activity that blocks nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) signaling [16-18]. 
Klotho functions as an endogenous antioxidant under various 
conditions [19]. One of its main effects is the regulation of 
extracellular calcium levels, and it also regulates phosphate 
reabsorption and excretion in the kidney [10,20,21].

 Klotho expression is universally suppressed in various 
types of cancer, such as breast, pancreatic, ovarian, lung, 
colorectal, and melanoma [22]. As a modulator of different 
growth factor pathways, Klotho acts as a tumor suppressor 
in pancreatic, breast, and liver cancers and inhibits different 
growth factors such as Insulin Growth Factor I (IGF-1) and 
Transforming Growth Factor Beta (TGFβ) 1 [4,23-26].

Klotho has a key mechanism of action that involves the 
restoration, preservation, and/or stimulation of cellular 
autophagy, which is one of its major functions.

Its actions extend to nearly all organs, although its synthesis 
varies across different systems.  In a comprehensive list, 
H. Olauson et al. specified the tissues that exhibited klotho 
expression and described the relevance of production in each 
case. In rodents, the kidneys, parathyroid gland, choroid 
plexus, and sinoatrial node are the primary sources of klotho. 
Meanwhile, intermediate levels of klotho expression are 
observed in the central nervous, endocrine, and respiratory 
systems; gastrointestinal and genitourinary tracts; and 
skeletal muscle. Lastly, the authors mentioned tissues with 
low or no klotho expression, including connective tissue 
and skin, cartilage, adipose tissue, cardiovascular and 
immune system, blood, salivary glands, and liver. However, 
reports on the gallbladder, genitourinary tract, and uterus 
are inconclusive [27].

KLOTHO EFFECTS IN HEALTH AND DISEASE

The absence of klotho in animal models results in 
premature aging, which is associated with organ regression 
and health changes that are indicative of human aging. 
These alterations are also linked to different pathologies 
that appear at different stages of life, offering insight into 
the potential therapeutic uses of klotho.

Kidney

The kidney is the principal organ responsible for klotho 
production and mediates many of its effects [28-30].  In 
aging rodents, serum creatinine levels are elevated, and 
renal klotho expression is decreased [31]. In individuals 
with chronic kidney disease, there is a deficiency of klotho, 
both locally and systemically. The decrease in klotho levels 
can serve as a sign of disease progression and is linked 
to the development of chronic kidney disease (CKD), 
including renal fibrosis, declining kidney function, and 
cardiovascular dysfunction [29,32-35]. Klotho’s systemic 
availability and endocrine signaling are affected by its 
reduction in the kidneys [29]. Klotho has been shown to 
reduce renal fibrosis by suppressing TGF-β signaling and 
mitigating organ senescence by reducing p21-cip1 mRNA 
levels [36]. Systemic klotho treatment has been found to 
improve uremic complications in animal models of CKD 
and may be a promising strategy to prevent, retard, and 
decrease comorbidities in CKD [32,37,38]. Klotho is also 
an important regulator of vitamin D metabolism and blood 
phosphate levels, directly associated with aging process 
[28,39]. In addition, klotho regulates calcium homeostasis 
with a direct effect on kidney calcium reabsorption [40, 
41]. Although the exact mechanism of action of klotho 
is not fully understood, klotho treatment has been shown 
to significantly reduce both renal and aortic calcium 
deposits [36]. Klotho deficiency has also been linked to 
cardiac hypertrophy, vascular calcification, endothelial 
dysfunction, salt-sensitive hypertension, and renal damage 
due to inflammation and hyperparathyroidism secondary to 
CKD [30,42-46].

In studies involving mice with rhabdomyolysis-induced 
acute kidney injury, the use of bone marrow mesenchymal 
stem cells transfected with recombinant adenoviruses 
expressing the klotho gene enhanced recovery [47].  It has 
been proposed that klotho modulates compensatory renal 
hypertrophy after nephrectomy by suppressing the IGF-1 
signaling pathway [48].

Klotho has been shown to reduce the severity of diabetic 
nephropathy in mice. Researchers have proposed that a 
decrease in the excretion of klotho in the urine may serve as 
an early indicator of diabetic nephropathy and administering 
klotho may have several positive effects on renal function 
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in this condition [49,50].

Heart

Research indicates that insufficient levels of klotho are 
connected to both essential and renovascular hypertension. 
In a prior study, it was determined that supplementing with 
klotho prevented the increase in blood pressure caused by 
high salt intake. Moreover, when administered via adeno-
associated virus in mice, klotho supplementation proved 
effective in reducing blood pressure, suggesting a promising 
long-term treatment for the condition [51,52]. Klotho may 
also serve as a potential biomarker for the early detection and 
progression evaluation of hypertension. In a mouse model, 
klotho supplementation decreased blood pressure and 
improved renin-angiotensin system activity [53,54]. Klotho 
gene delivery, another strategy, has demonstrated positive 
effects on endothelial function and has been proposed as 
a possible therapeutic alternative for modulating vascular 
remodeling in arterial hypertension [55]. 

Low levels of klotho have been linked to hypertension 
during pregnancy, and its concentration in the placenta may 
help to predict preeclampsia risk [56-58].

Klotho is expressed in human arteries and Vascular 
Smooth Muscle Cells (VSMCs), and its knockdown results 
in VSMCs calcification in vitro [59]. This further supports 
the endothelial protective effects of klotho associated with 
its antioxidant activity [60]. Klotho regulates intracellular 
calcium levels by affecting the ejection rate, speed of 
contraction and relaxation, and alleviation of fibrosis and 
remodeling of the myocardium in a rat model of heart 
failure [61].

Klotho and TGF-β interaction results in decreased 
proliferation and hypertrophy of cardiomyocytes, as well as 
fibrosis of the cardiac connective tissue, with a clear impact 
on cardiac remodeling. 

Klotho deficiency has been linked to several age-related 
vascular defects, including arterial dilatation, vascular 
calcification, an increased collagen-to-elastin ratio, 
endothelial dysfunction, inflammation, and hypertrophy 
of vascular smooth muscle cells [62,63]. Recent studies 
indicate a considerable reduction of up to 45% in the 
serum levels of klotho in individuals with hypertension 
and heightened vascular stiffness [61,64]. Overexpression 
of klotho ameliorates arterial medial calcification and 
endothelial dysfunction [65]. This protective action, in 
CKD and age-related associated decline,  could be mediated 
by the regulation of phosphate and vitamin D, as well as 
a direct effect on vascular smooth muscle cells [63]. The 
increase in autophagy is another mechanism induced by 

klotho to ameliorate calcification through multiple possible 
mechanisms, including IGF-1 and the Mammalian Target of 
Rapamycin (mTOR) phosphorylation [66]. The relationship 
between serum klotho levels and pulse pressure has been 
found to be inverse and independent, implying that klotho 
may be associated with arterial stiffness [67]. Klotho 
deficiency has also been linked to decreased arterial 
stiffening and subsequent hypertension through minor 
autophagic activity [68].

The anti-inflammatory properties of klotho play 
an essential role in preventing the production of pro-
inflammatory cytokines in the peri-infarct regions. This was 
demonstrated by the administration of recombinant klotho, 
which significantly reduced apoptosis and intracellular 
reactive oxygen species in myocardial ischemia and 
reperfusion injury [69]. The release of klotho into the 
intercellular space by ischemic cardiac tissue suggests a 
protective mechanism. Furthermore, the elevated levels of 
serum Klotho in patients with heart failure may make it a 
promising biomarker for assessing heart injury [70,71].

Klotho has been proposed to have an anti-apoptotic effect 
as well as a positive effect on angiogenesis associated with 
its anti-senescence action [72-74].

Metabolic syndrome has been found to be a significant 
risk factor for cardiovascular disease and mortality, and 
studies have suggested that individuals with high klotho 
levels may have a reduced risk of developing this condition 
[75].

Research has also revealed an inverse association between 
klotho gene expression and hyperlipidemia [76].

Brain

In the brain, klotho is expressed by choroid plexus 
epithelial cells, and in the cerebellum, by Purkinje neurons. 
Klotho exerts a protective effect on hippocampal neurons 
against oxidative stress similar to that observed in the 
kidney [77].  Klotho promotes neurogenesis in the adult 
hippocampal area as well as hippocampal-dependent 
cognition, whereas decreased klotho expression leads to 
decreased hippocampal-dependent memory [78].

Klotho protein decreased with aging in the prefrontal 
cortex, cerebral cortex, and hippocampus [79].

It has been suggested that the level of circulating klotho, 
which does not pass through the Blood-Brain Barrier 
(BBB), serves as a clinical indicator of vascular cognitive 
impairment. This is because reduced circulating klotho 
levels have been found to correspond with the degree of 
deep white matter lesions in the brain, which are associated 
with cognitive decline [80]. The use of klotho fragments 
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in peripheral administration has been found to improve 
synaptic plasticity and cognitive function in aged mice. 
Additionally, increased serum klotho levels have been 
shown to positively impact intrinsic connectivity in key 
functional brain networks that are vulnerable to aging and 
Alzheimer’s Disease (AD) [81,82]. A single subcutaneous 
administration of a low dose of klotho has been shown to 
enhance memory in nonhuman primates [83]. A possible 
explanation for these effects is that peripheral klotho may 
indirectly modulate brain function through signals that can 
cross the BBB [81]. The exact circuits by which systemic 
klotho influences brain function, health, and aging remain 
to be determined. 

It has shown that rats exposed to chronic unpredictable 
stress exhibit reduced expression of klotho in the choroid 
plexus, along with other proteins [84].

The pretreatment of neurons with klotho has been shown 
to prevent the harmful effects of amyloid-β and glutamate, 
which are associated with AD pathogenesis [85]. Klotho 
levels in the cerebrospinal fluid are lower in patients with 
AD and older adults than in younger adults. [86] In aged 
mice, overexpression of klotho in the brain and serum 
improved amyloid-β clearance and cognitive deficits by 
reducing neuronal and synaptic loss [87]. Klotho also 
reduced oxidative stress in the brain, which is associated 
with sporadic AD [88]. Klotho serum levels are known to be 
correlated with cerebrospinal fluid levels and are predictive 
of cognitive function. Furthermore, serum klotho levels 
are highly reflective of cerebrospinal fluid levels, making 
klotho an important biomarker for cognitive health and 
neurodegeneration [89].

Klotho stimulates oligodendrocyte maturation and plays 
a crucial role in myelin biology, making it a promising 
therapeutic target for protecting brain myelin against 
age-dependent changes and for promoting repair in 
multiple sclerosis. Additionally, it enhances myelination 
in the central nervous system, which protects against age-
associated demyelination and other neurological diseases. 
[90] Myelinization is highly dependent on oligodendrocyte 
mitochondrial function and is strongly enhanced by klotho 
activity. 

Klotho has also been proposed as a potential protective 
factor against retinopathy in patients with type 2 diabetes 
[91]. A reduction in intraocular klotho level is associated 
with oxidative stress, inflammation, and the development 
of age-related macular degeneration [92]. Klotho may also 
play a role in hearing function and auditory disorders by 
modulating endolymph composition [93]. Klotho protein in 
the inner ear may potentially delay the onset of age-related 
hearing loss and support auditory capacity [94]. 

The significant influence of klotho on neuropsychiatric 
disorders further highlights its significance in nervous 
system function. Prolonged mental stress is linked to 
hastened aging, untimely sickness, and mortality. The levels 
of klotho in chronic stress are lower than those in low-
stress conditions. Similar results have been reported for 
patients with depressive symptoms. It has been suggested 
that klotho reduction plays a role in the pathogenesis of 
depression, as its overexpression produces an antidepressant 
effect in normal mice and ameliorates behavioral responses 
in susceptible mice [95]. Klotho can be considered as a 
potential marker of psychological health that can monitor or 
predict the evolution of stress and depression [96]. Klotho 
is elevated in the cerebrospinal fluid of elderly patients 
with depression undergoing Electroconvulsive Therapy 
(ECT). This effect, which is similar to that observed in vitro 
when cells are electro-stimulated, has been linked to the 
modulation of neuroinflammatory processes that contribute 
to the antidepressant effects of ECT [97].

Plasma levels of klotho may serve as a promising candidate 
for a novel biomarker for sexual desire and function [98]. 
Noting its potential influence on male sexual activity, it is 
essential to recognize that the klotho gene has previously 
been associated with the occurrence of priapism [99].

Mothers of children with autism spectrum disorder 
under high chronic stress exhibit lower levels of klotho 
than low-stress mothers of typically developed children. 
Within the stressed group, those reporting more depressive 
symptoms had even lower klotho levels than the low-stress 
participants. These findings imply that klotho is involved 
in the relationship between stress and depression and may 
have a therapeutic role [96]. In a similar scope, Gao et al. 
proposed that klotho could serve as a connection between 
depression and dementia by regulating oxidative stress and 
inflammation [100].

It has been suggested that klotho may be implicated 
in schizophrenia pathogenesis, with increased klotho 
potentially acting as a compensatory factor to preserve 
cognitive function in individuals with this condition [101].

Lung

The anti-inflammatory properties of klotho have a 
substantial positive impact on the respiratory system. 

Klotho has been characterized as a protective factor against 
oxidative stress in lung disease [1,102]. Studies suggest that 
individuals suffering from Chronic Obstructive Pulmonary 
Disease (COPD) and those who are exposed to ozone or 
cigarette smoke tend to have decreased levels of klotho in 
their airways [102, 103]. In a large sample population, it was 
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detected that serum klotho was lower in current smokers 
than in nonsmokers and quitters [104]. The protective effect 
of klotho on paraquat-induced lung injury has been observed 
as further evidence of its local anti-inflammatory activity 
and modulation of mitochondria-dependent apoptosis [105]. 
Klotho secretion inhibits Interleukin-8 (IL-8) secretion in 
cystic fibrosis airway epithelium, acting as an endocrine 
and local anti-inflammatory agent [106].

In a mouse model of chronic asthma induced by ovalbumin 
and utilizing BEAs-2B human bronchial epithelial cells, the 
klotho protein was discovered to be vital for suppressing 
fibrosis related to persistent airway diseases [107].

Klotho levels have also been found to be reduced in 
individuals with obstructive sleep apnea, and this reduction 
may contribute to the systemic inflammation associated 
with the condition  [108].

Bone

Klotho plays a role in mouse limb development, 
chondrocyte differentiation, and cartilage formation, as 
well as in transient expression that occurs during in vitro 
chondrogenic differentiation of mesenchymal stem cells. 
The presence of senescent chondrocytes is a hallmark of age-
related damage to the articular cartilage. In a mouse model 
of osteoarthritis, intra-articular gene transfer of klotho was 
shown to delay cartilage senescence and degradation [109].

Preliminary results showed that plasma klotho 
concentration was an independent predictor of changes in 
knee strength over time in older adults [110].

Altered spatial distribution of osteocytes and bone matrix 
proteins, as well as accelerated aging in bone cells, was 
observed in klotho-deficient mice [111]. In the opposite 
manner, higher serum klotho levels result in a lower 
incidence of osteoporosis in postmenopausal women [112]. 

Skin

Deficient klotho mice exhibited a noticeably slower rate 
of wound healing, accompanied by a decrease in collagen 
deposition and signs of skin deterioration that resembled 
age-related deficits in collagen 1 and 3 [113].

It has been hypothesized that klotho may function as a 
regulator of human hair growth and the hair cycle. Klotho 
is expressed in human hair follicles and its expression 
decreases with age. Klotho was found to extend human 
hair growth, whereas its inhibition had the opposite effect, 
promoting the onset of catagen [114].

Muscle

Klotho plays a crucial role in regulating muscle 

physiology and is associated with the natural muscle 
dysfunction associated with aging. Exercise-induced klotho 
has been reported in several studies to reverse or delay 
muscle regression, leading to its classification as a novel 
ergonomic agent. Antioxidant protection and antifibrotic 
and anti-inflammatory mechanisms are believed to be key 
factors in the beneficial effects of klotho on muscle tissue 
[115].

Klotho has been found to be positively correlated with 
muscle strength and negatively correlated with osteoporosis, 
frailty, disability, and mortality, as indicated in a systematic 
review [116]. Furthermore, physical activity typically 
results in an increase in klotho levels and its deficiency has 
a significant impact on muscle strength and endurance in 
mouse models; this information is relevant for understanding 
the causes and consequences of age-related muscle decline 
and conditions, including sarcopenia [117]. Muscle stem 
cells are significantly decreased in klotho hippomorphic 
mice, and their function is altered due to the loss of klotho 
expression in vitro and in vivo. Klotho seems to exert its 
influence by suppressing Wnt signaling in aged stem cells, 
thereby facilitating the transformation of satellite cells into 
a myogenic lineage and diminishing fibrosis [118]. Klotho 
secretion increases after muscle damage as an apparent 
reparative mechanism that is reduced by aging. Consistent 
with this finding, klotho appears to be a fundamental 
mediator of skeletal muscle regeneration.

THERAPEUTICAL KLOTHO INDUCTION

Klotho administration or the use of genetic therapies have 
been effective in modulating klotho expression in various 
animal models. However, translating this into a human 
application is a complex and time-consuming process.  
Alternatively, natural inducers, such as exercise, lifestyle 
changes, energy stimulation, or plant and pharmaceutical 
agents, offer promising prospects for klotho application in 
human medicine.

It is reported that even short periods of moderate-intensity 
training can lead to an increase in klotho concentrations 
[119]. In rats, moderate aerobic training has been shown to 
attenuate aging-induced pathological cardiac hypertrophy, 
in part by restoring klotho levels, reducing oxidative stress, 
and decreasing the phosphorylation of ERK1/2, P38, 
and fibrosis [120]. The levels of klotho vary depending 
on exercise type and duration, but its inductive effect 
is undeniable [115]. The minor risk of chronic diseases 
seemingly associated with elite-level athletes’ activities 
appears to be evidence of the antiaging effect of aerobic 
activity, and that klotho expression is associated with 
muscular contraction [121]. According to recent research, 
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klotho has been implicated as a key factor in the body’s 
recovery process following strenuous exercise [122].

It is crucial to explore alternative methods for promoting 
klotho production in patients who are confined to bed for 
extended periods or have movement restrictions due to 
pathology. Passive mobilization or physical stimulation, 
such as electrical muscle stimulation, can potentially 
mitigate the negative effects of immobilization on klotho 
production. Previous research has shown that in vitro 
electrical stimulation of different cell types can increase 
klotho transcription (unpublished data). Electricity can 
stimulate the production of myogenic proteins, as previously 
observed for the in vitro induction of Follistatin (FST) 
[123].

Klotho levels have been strongly associated with lifestyle 
and stress. For instance, sleep quality has an impact on 
klotho plasma levels, making it a potential means of 
preventing age-related decline [124]. 

Natural geroprotectors, such as curcumin, ginseng, and 
resveratrol, have been shown to induce klotho expression in 
animal models [18,125]. Similar activity has been suggested 
for astaxanthin, which slows brain aging [126]. Ligustilide, 
a substance found in nature with neuro-anti-inflammatory 
properties that can cross the blood-brain barrier, has an 
effect similar to that of IGF-1 and cytokines. It increases 
the production of klotho by inducing the expression of 
α-secretases, and has shown a protective effect in a mouse 
model of AD [18,127].

Studies have shown that Vitamin D upregulates klotho 
transcription [128]. A strong positive correlation has been 
reported between dietary vitamin C consumption and serum 
klotho concentrations in the general adult population [129]. 
An antioxidant diet can also achieve similar results. A similar 
effect involves the inhibition of the mTOR, which activation 
suppresses klotho gene expression [130]. Peroxisome 
Proliferator-Activated Receptor-ϒ (PPARϒ) induces 
klotho expression [131]. Aldosterone and angiotensin II 
decrease klotho production. Statins stimulate klotho gene 
transcription diminishing angiotensin II response. Valsartan 
use in hypertensive patients is associated with an increase 
in soluble klotho levels [132,133].

KLOTHO AND REGENERATIVE MEDICINE

The use of klotho in tissue engineering and regenerative 
medicine remains limited. Given its ability to modulate 
the anti-aging process, klotho is a promising candidate for 
promoting tissue repair and regeneration. Its diverse actions 
on various cell types can aid tissue restoration, especially 
in individuals with chronic diseases, limited mobility, or 

advanced age [134]. Klotho exerts various effects with 
significant implications in regenerative medicine, such 
as inhibition of apoptosis, modulation of inflammation, 
and stimulation of stem cell populations (Figure 1). Its 
therapeutic action can be achieved using biomaterials, cell 
therapies, or a combination of both strategies.  

Klotho, when administered through a nanomaterial 

Figure 1: Klotho’s anti-aging actions with potential 
benefits in regenerative medicine.

compound, has shown promising therapeutic effects 
on diabetic foot and atherosclerotic ulcers [135]. The 
incorporation of klotho within a bio-active reinforced 
hydrogel that contains Mesenchymal Stem Cells (MSC) 
resulted in a decrease in oxidative stress and local 
inflammation, thereby enhancing the regenerative effect 
on myotendinous junction injuries [136]. A portion of 
the protective effect exerted by klotho on stem cells is 
attributed to the restoration of mitochondrial function, 
which is coincident with the observed cell mitochondrial 
dysfunction in impaired muscle regeneration associated 
with klotho’s age-related decline [137]. Klotho seems to 
play a significant role in the neural differentiation of bone 
marrow-derived MSCs, as cell changes are linked to an 
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